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Abstract

Existing studies on the coupled electroelastic behaviour of cracked piezoelectric media have been based mostly on the
electrically impermeable and permeable crack models. The current paper presents a study of the effective electroelastic
property of piezoelectric media weakened by parallel cracks using a dielectric crack model with the electric boundary
condition along the crack surfaces being governed by the opening displacement. The theoretical formulation is obtained
using the dilute model of distributed cracks and the solution of a single dielectric crack problem. It is observed that the
effective electroelastic property of cracked piezoelectric media is nonlinear and sensitive to loading conditions. Different
modes of crack deformation are predicted and discussed. Attention is paid to the transition between electrically per-
meable and impermeable crack models.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been widely used in electromechanical devices, such as actuators, sensors
and transducers due to their strong electromechanical coupling. The newly developed piezoceramic ma-
terials are generally brittle and susceptible to cracking during manufacturing and service processes. It is,
therefore, essential to evaluate the electromechanical behaviour of this type of piezoelectric materials in the
presence of microcracks.

The existence and development of microcracks in solid media exert important influences on various
aspects of material properties. The investigation on effective material properties of microcracked media is of
great importance and has drawn significant attention from the research and industrial communities. For
traditional microcracked solids where boundary conditions along the crack surfaces are well defined,
various micromechanics schemes have been established to estimate the effective moduli. The simplest one is
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the dilute or noninteracting model (Kachanov, 1992, 1993), in which the interaction among cracks is neg-
lected. When accounting for the effects of the microcrack interaction, one may estimate the effective
moduli by using self-consistent method (Hori and Nemat-Nasser, 1983; Budiansky and O’Connell, 1976),
the differential method (Norris, 1985; Hashin, 1988; Zimmerman, 1991), the Mori-Tanaka method (Mori
and Tanaka, 1973; Benveniste, 1986; Weng, 1990), and the generalized self-consistent method (Aboudi and
Benveniste, 1987; Huang et al., 1994). In all these methods, it is assumed that the microcracked solids are
statistically homogeneous and subjected to uniform tractions or displacements.

Relatively fewer studies have been conducted to deal with the effective electroelastic property of
piezoelectric materials. The models mentioned above have been modified and used to study this type of
materials. The effective electroelastic moduli of fiber reinforced piezoelectric composites were predicted by
using the self-consistent method based on a concentric cylinder model (Grekov et al., 1989). Dunn and
Taya (1993a,b) estimated the effective properties of piezoelectric composites using dilute, self-consistent,
Mori-Tanaka and differential micromechanics models. The effective thermo-electro-elastic moduli of
multiphase fibrous composites were studied by Chen (1994). Yu and Qin (1996) evaluated the thermo-
electro-elastic properties of microcracked piezoelectric materials using the generalized self-consistent
method.

It should be noted that for microcracked piezoelectric media, the electric boundary condition along
crack surfaces is still one of the fundamental issues requiring further investigation, which may have im-
portant influence on the effective electroelastic property. Existing studies on the effective properties of
cracked piezoelectric materials, as mentioned above, have been limited mostly to two typical crack models
using different electric boundary conditions, i.e. electrically permeable model (Parton, 1976; Wang, 2001)
and electrically impermeable model (e.g., Deeg, 1980; Pak, 1990; Suo et al., 1995; Park and Sun, 1995).
These models represent two limiting cases where the electric permittivity of the crack is infinite and zero,
respectively. Elliptical crack models (McMeeking, 1989; Sosa, 1991; Dunn, 1994; Zhang et al., 1998) has
been used to study the effect of initial crack opening and the dielectric medium inside a crack upon electric
boundary conditions. The results indicate that the permeable condition may underestimate the effect of the
electric field on the crack propagation and impermeable model may overestimate its effect. For a slit crack,
since the dielectric constant of piezoceramics is much higher than that of the air (or vacuum) filling the
crack, the electric boundary condition may be very sensitive to the crack opening caused by the applied
mechanical and electric loads (Wang, 2001; Wang and Jiang, 2002a,b). As a result, the electric boundary
condition along the crack surfaces becomes deformation-dependent, which results in nonlinear response of
the cracked medium to the applied loads and may significantly affect the effective electroelastic property.

It is therefore the objective of the current paper to provide a theoretical study of the effective electro-
elastic property of microcracked piezoelectric materials. A dielectric crack model with deformation-
dependent electric boundary conditions in conjunction with a dilute model of interacting cracks are used to
determine the nonlinear behaviour of the cracked medium. Special attention is paid to the effect of the
dielectric medium filling the crack upon the effective electroelastic properties and the transition between
permeable and impermeable crack models with increasing crack opening.

2. Statement of the problem

The plane problem envisaged in the current paper is to determine the effective electroelastic property of a
piezoelectric medium weakened by parallel distributed cracks filled with a dielectric medium with negligible
mechanical moduli. Assume that the microcracked piezoelectric medium can be modelled by a represen-
tative volume element (RVE) of volume Q with unit thickness in z-direction and area 4 in xoy plane as
shown in Fig. 1. The effective electroelastic property of this cracked medium can be derived by considering
the relation between the volume averages of two piezoelectric field variables ® and Z,
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Fig. 1. The RVE model with parallel cracks.
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with the components of these vectors being given by
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oy, u, D; and V' are the stress, the displacement, the electric displacement and electric potential, respec-

tively. In the current paper, bold letter denotes matrix/vector quantities.
The general relation between Z and @ can be expressed as,

7 —S® (7)

with S being the generalized compliance matrix of the effective medium, which may depend on ®. Suppose
the boundary 0Q2 of the RVE is subjected to tractions 7; and electric displacement D, which correspond to a
uniform stress and electric displacement field ®° = {q{,, 6%,,0%,, D}, D3} with T; = 60n;, D = D)#; and 7,
being the components of outward normal of 0. The averaged stress and electric displacement in the
cracked medium can be obtained using Eq. (1) as,

=’ (8)

Using the average scheme of Eq. (2), the average strain and electric field density Z can be decomposed into
two parts as discussed for traditional cracked media by Nemat-Nasser and Hori (1993),

Z=71"+Z )
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where Z™ can be determined by,
7" =S"®’ (10)

with S™ being the generalized compliance of the host medium. Z° is caused by the presence of microcracks,
the components of this vector can be determined by the displacement and electric potential jumps across
crack surfaces (Nemat-Nasser and Hori, 1993; Yu and Qin, 1996). Z° can be generally expressed as,

ARSI (11)

where S¢ is a matrix to be determined through the crack surface deformation. Using Egs. (7)—(11), the
effective compliance of microcracked piezoelectric media becomes,

S=S"4§ (12)

3. Effective electroelastic properties of cracked piezoelectric media

There are two important issues in the determination of matrix S° of cracked media through the use of
different micromechanics models, the crack model and the interaction of cracks. In the current paper, ‘real’
electric boundary condition along crack surfaces will be considered using a dielectric crack model, and a
dilute scheme will be used to treat crack interaction.

3.1. A dielectric crack

Consider a plane problem of a slit crack of length 2a filled with a dielectric medium with negligible
mechanical moduli in an infinite piezoelectric medium with the poling direction along y, as shown in Fig. 2.
Similar to the traditional crack model, the crack surfaces are traction free, i.c.,

5;2 =0, =0 (13)

When this slit crack is deformed, the thickness of the dielectric medium filling the crack will be changed,
which will influence the overall dielectric property of the crack. As a result, the electric boundary condition
along the crack surfaces will be deformation-dependent, unlike the existing crack models where only the
original dimension of the crack is used (see, McMeeking, 1989; Dunn, 1994; Zhang et al., 1998).
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Fig. 2. Crack model and the decomposition.
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For cases where opening deformation is significantly smaller than the crack length, it is assumed that the
electric field intensity £, and the electric displacement D, are uniform across the thickness of the deformed
crack, with

B= (7 -7 (14)
d

_ _ 1

D2:€0E2 or D2:—60—(V -V ) (15)

d>

where d, = u; — u; is the opening displacement of the crack with superscripts + and — representing the
upper and lower surfaces of the crack, respectively. ¢, is the dielectric constant of the medium inside the
crack.

The original crack problem (a) in Fig. 2 can be decomposed into the superposition of two subproblems
(b) and (c). Subproblem (b) contains a uniform medium subjected to the applied mechanical and electric
loading at infinity, and (c) includes a crack subjected to both mechanical and electric loads along its sur-
faces. The deformed geometry is used in (c¢) for the electric boundary condition. By using superposition
principle on the deformed geometry, the traction free condition given by (13) can be expressed as,

03 =0y =0y, 03+ 0y =0 (16)
and the electric boundary condition (15) becomes
D =Dy =Dy; D, + DY = e(Er+Ej) (17)

where E, = —(V* — V™) /dy, and E; = —(V*T — V*7)/d, is the applied electric field intensity.

For cases where the dielectric constant of the piezoelectric medium is much higher than ¢, air filled crack
for example, the additional term €E; in (17) can be ignored in comparison with DY. Egs. (16) and (17)
represent the deformation-dependent boundary condition of subproblem (c), which can be written in a
matrix form as,

t+t"+ KKV —v ) =0 (18)

where K is a 3 x 3 matrix with only one nonvanishing element ks; = €y/d. In addition, t = {¢9,, %, DJ}",
t= {021,0’22,D2}T, and v = {ul,uz, V}

To solve this problem, the crack in subproblem (c) can be modelled in terms of the jumps of dis-
placements and electric potential across the crack surfaces (Wang and Jiang, 2002a,b), as given in
Appendices A and B,

“ 1
_ _ —H71 / 1
£(x,0) /( T )d(é)d&j (19)
where d' = 9d/0x, d is the jumps of the displacement and electric potential across crack surfaces defined by,
d(x) =v*(x,0) — v (x,0) (20)
and
hll hIZ h13
H=|hyn hn hy (21)
h31 h32 h33

is a constant matrix given in Appendix B. Making use of (19), the general boundary condition (18) becomes
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where I' = H'd.

Singular integral equation (22) includes a square-root singularity and can be solved using Chebyshev
polynomials,

l"’(x)mT](z)/ 172—2 (23)

where m® = {m;,m,, m3} is a vector to be determined and 7;(x/a) is the first order Chebyshev polynomial
of the first kind. The jumps of the displacement and the electric potential across the crack surfaces are
obtained as,

dé+ +KHI =0 (22)

Au, himy + hiymy + hyzms
d=1< Auy p = —< hymy + hpmy + hyzms a* —x? (24)
AV hyymy + hymy + hyzms

Substituting (23) into (22) results in
m — KHmVa? — x2 = —t° (25)

The only nonvanishing element of K is k33 = €y/d> with d, = Au, being the crack opening displacement.
Then Eq. (25) is reduced to the following algebraic equations
0

mp = —0y
" (26)
my = DY — hyimy + hamy + hy3m;

0
hyymy + hypymy + hyzms

from which, m, m, and m3 can be determined from the applied mechanical and electric loading.
3.2. Effective electroelastic properties

In the current paper, the crack interaction is simplified using a dilute model, i.e. a microcrack is assumed
to be surrounded by a pristine matrix. The crack surface deformation can then be determined directly from
the single crack solution given in the previous subsection. It is assumed that N, is the number of cracks of
length 2a, in the RVE with o = 1,2, 3, ... representing cracks of different lengths. The averaged strain and
electric field intensity can then be expressed in terms of the jumps of the displacement and the electric
potential across crack surfaces, similar to that obtained by Nemat-Nasser and Hori (1993) and Yu and Qin
(1996) for traditional cracked materials and for piezoelectric materials with impermeable cracks,

Z; = ZAZ/ {0 +H(I = 3)]dn; + H(2 — j)dn; }ds 27)

where d; are elements of the jumps of the displacement and the electric potential across crack surfaces given
in Eq. (24), and #n, are elements of n = {0, 1, O}T.

Based on the result of d; from the above mentioned dielectric crack model and making use of Eq. (24),
the total contribution of cracks to the average strain and electric field intensity becomes,

Z = g{u + H(I = 3)]AUmn; + H(2 — j)AU;n;} (28)
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where
3
AU == hymy (I,k=1,2,3) (29)
k=1

are the jumps of the displacement and the electric potential at the centre of the crack, which contains the
nonlinear effect of loading conditions represented by m;, and o is the crack density defined by,

o=m z": N,a2/A
o=1

For a typical piezoceramic material with the poling direction along y, the generalized compliance matrix
of the pristine medium S™ is in the form of

-1

f11 flz 0 0 P21 cn e 0 0 €12
Ju 2 0 0 p» ¢y cn 0 0 €2
S"=10 0 fis pu 0]|=]0 0 ci ey 0 (30)
0 0 P13 k11 0 0 0 €3] —€]1] 0
P2 P2 0 0k ey en 0 0 —€2

The material constants of PZT-4 piezoceramics (Park and Sun, 1995), for example, are

e = 13.9 x 10" N/m2
cn =743 x 10" N/m?
e = 11.5 x 10" N/m?
33 = 2.56 x 10'° N/m?
ey = —5.2 C/m?
en = 15.1 C/m?
e = 12.7 C/m?
€11 = 6.45x107° C/Vm
e =562x 107 C/Vm

For this type of materials, the generalized compliance of the cracked medium defined by (12) can be ob-
tained from Eqgs. (11), (28) and (30) as,

siposi2 0 0 15
s31 s» 0 0 55
S = Sm + SC = 0 O 533 S34 O (31)
0 0 543  S44 0
ssp s 0 0 ss5

The elements of S are determined by the jumps of the displacement and electric potential across the crack
surfaces, which are governed by the applied loads.

In the following discussion, attention will be paid to the determination of the elements of the compliance
matrix S under different mechanical and electric loads. It should be mentioned that, because of the non-
linearity of the problem and the specific definition of S given by (12), the resulting S may not be symmetric.
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3.2.1. Tensile loading
First, let the RVE under consideration be subjected to a stress field with 69, # 0 and o), = ¢, =

D) = D) = 0. Eq. (26) results in m; = 0, m, = —a9, and two solutions for ms, as
1
f=——(A4-D); m;==—(A4+D 32
ms; 2h2’; ( )7 ny 2h23 ( + ) ( )
where

A= h226(2)2 - 60h33; B = 4h§3€0682; D= A2 + B

my,mj result in the opening and the overlapping of the crack surfaces, respectively, i.e. Auy(m3) >0,
Auy(m3) < 0. The solution corresponding to crack overlapping is not the one we are looking for since this
phenomenon contradicts the original model of the crack. Therefore, for a tensile crack, only an open mode
exists, for which the crack opening and the jump of electric potential AU; at the centre of the crack can be
determined using (29) as

AUQ = h220'(2)2 — h23m3+ (33)

AU} = h320’22 — h33}’l’l3+ (34)

Using these jumps along crack surfaces the corresponding effective elastic and piezoelectric parameters can
be determined from Eq. (31) as,

o
s =frts (h2269, — hysmy) /a3, (35)
0 0 £\ /-0
Ssp = P + ) (hx203, — hyymy) /03, (36)
S12 :f12 (37)

3.2.2. Shear loading
For the case where only the shear stress 9, is applied, two solutions can be found m; =0 and

ms = —€o(h33/ha3). All these solutions correspond to closed crack. Since 413 = 0, the nonvanishing jumps of
the displacement and electric potential AU; can be expressed as,
AU[ = hllagl (38)
AU3 = —h337713 (39)

Correspondingly, the following effective elastic and piezoelectric parameters can be derived,

X )
533 =f33+§h11 (40)

543 = P13 (41)

3.2.3. Electric loading

When electric displacement DY is applied and ¢, = 69, = 69, = D} = 0. Two solutions of m; can be
obtained as my = 0 and m3 = —DY — €(h33/hy3). m3 = 0 corresponds to a closed crack mode and has no
effect upon the material properties. However, an opening crack mode represented by the second solution
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exists when the applied electric displacement satisfies DY > —¢q(h3/ha3). The corresponding jumps of the
displacement and electric potential AU; are

h
AUZ = h23 (Dg + 60£> (42)
has
o 0 h33
AU3 = h33 D2 + €)7— (43)
has
The effective dielectric and piezoelectric parameters can be expressed as,
0 h
ss5 = kay + = ha3 [ DS + € = D) (44)
2 has
0
S25 = pn + 3 (ha3 D5 + eohs3) /DS (45)
S15 = P21 (46)

3.2.4. Other loading conditions
When only mechanical loading o9, or electric displacement D! is applied, there will be no crack opening
and the corresponding electroelastic parameters are same as that of the matrix, i.e.

s =fnu (47)
s21 = f12 (48)
S51 = poi (49)
saq = k1 (50)
$34 = P13 (51)
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Fig. 3. Comparison for the normalized effective c3,.
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Fig. 4. Comparison between cracked and porous piezoceramics.

4. Results and discussion

First, we restrict our attention to the verification of the current solution. For isotropic elastic media
weakened by parallel cracks, an analytical solution can be obtained, which predicts ¢, = 1/(1 + 20). The
result is supported by numerical calculations and is identical to that obtained by Kachanov (1992). To
verify the current solution for piezoelectric media and evaluate the suitability of the dilute model (DIL)
used, existing results of normalized stiffness ¢}, = ¢»/c%, for BaTiO; weakened by parallel cracks (Qin
et al., 1998) are compared in Fig. 3 with the result of the present solution based on the impermeable crack
model. Excellent agreement is observed. Results from self-consistent (SC) method and finite element (FE)
method are also included in Fig. 3. The comparison shows that, for the current problem, the dilute model
provides reasonable prediction of the effective property of the cracked medium for the crack densities
considered, as evidenced by the good agreement between the current result and that of the finite element
method. Comparison is also made in Fig. 4 between the current solution, based on the impermeable crack

4 T ' ' '
N J
*N
N
[%2]
G>-> 25 |
g ——— Current model
K Impermeable
w 2} ———- Permeable |
15 | |
1 y ' ' :
5 20 20 60 80 100
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Fig. 5. The normalized effective 53, under tensile stress.
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Fig. 7. Variations of s;, with crack density.

model, and that of a PZT-5" weakened by distributed spherical voids (Dunn and Taya, 1993b) with the
crack density being assumed to be equal to the volume fraction of voids. A good agreement is observed for
low crack densities.

The following discussion will be focussed on the numerical results of the effective electroelastic properties
of cracked piezoelectric media, especially the transition between conventional impermeable and permeable
models. Material constants of PZT-4 given in the previous section are used in the simulation. The dielectric
medium filling the crack is assumed to be air with ¢, = 8.85 x 10712 C/Vm.

The normalized effective parameter 53, = 52,/ /2, under tensile loading given by Eq. (35) is plotted in Fig.
5 with the crack density being 6 = 0.37. It shows that this effective elastic modulus decreases with increasing
tensile stress. But this effect is not significant. Corresponding results from impermeable and permeable
crack models are also provided for comparison. The modulus from the current model is higher than the
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Fig. 9. The normalized s3; under electric loading.

result of the impermeable model but lower than that of the permeable one. For low stress, s, is very close to
the corresponding result using the permeable crack model. However, it approaches that of the impermeable
model with increasing stress level. Fig. 6 shows the effect of applied tensile stress upon the normalized
effective piezoelectric parameter s, = ss5,/p2y, Which is greater than the permeable result but less than the
impermeable one. Similar to s3,, it is observed from Fig. 6 that although the current result supports the
permeable crack model when the stress level is low, with the increase of applied tensile stress the crack
model will approach the impermeable one.

The effects of crack density upon the normalized effective parameters s3, and s%, are shown in Figs. 7 and
8, respectively for an applied tensile stress a5, = 50 MPa. Both s3, and sz, are increasing with the increase of
crack density for both current and impermeable crack models, although crack density ¢ shows no effect on
the normalized effective piezoelectric parameter s%, from permeable model.
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For shear loading, it is noted from Eq. (40) that crack density ¢ is the only parameter controlling s33. s33
increases linearly with increasing crack density, which is identified to that by the impermeable and per-
meable models.

Fig. 9 shows the effect of an applied electric displacement D upon the normalized dielectric parameter
Sts = 855/kap With the crack density 6 = 0.37. 5%, from the current model increases with increasing applied
electric displacement and is always between the results from two conventional models. si; approaches that
of the permeable model when the applied electric displacement is low, as expected. Similar results for
normalized piezoelectric parameter s35 = s25/p», are plotted in Fig. 10. The effects of crack density upon the
effective dielectric and piezoelectric parameters s and s3; under an applied D = 5.0 x 102 C/m?* are
provided in Figs. 11 and 12, respectively.
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It should be noted that the effective s3; and s, are load-dependent, which will cause the unsymmetry of
the generalized effective compliance matrix. Significant discrepancy between the current model and the
impermeable and permeable ones is observed, indicating that the dielectric property of the crack and the
crack opening should be considered in determining the effective property of this type of materials.

5. Conclusions

A dielectric crack model is used to investigate the effective electroelastic property of piezoelectric media
with parallel cracks. The jumps of the displacement and electric potential along crack surfaces are used for
formulating the nonlinear electric boundary condition. Attention is focused on the parameters that control
the effective electroelastic properties, the nonlinearity of these effective parameters and the transition be-
tween permeable and impermeable crack models under different loads. The current study indicates that the
commonly used permeable and impermeable crack models represent two limiting cases which may not be
suitable for predicting the effective property of cracked piezoelectric media.
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Appendix A

In the absence of free charges and body forces, the electromechanical behaviour of a piezoelectric
medium is governed by the equilibrium equation and the Gauss’ law,

0;;=0; Di; =0 (A1)
and the constitutive equations,

Gij = Cijrstrs — €jE,; D = €5y + €;F; (A2)
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where c;;s, ;s and ¢;; are elastic, piezoelectric and dielectric constants, respectively, 7, j, 7,5 = 1,2,3, with 1,
2,3 corresponding to x, y and z, respectively. ¢, and E, are strain and electric field intensity defined by

1 (Ou, Ouy) oV
) <6xs * Ox, )’ Er=- Ox, (A3)

with u, and ¥ being the displacement and the electric potential.

Consider a plane problem of a slit crack of length 2a in an infinite piezoelectric medium with poling
direction along y, as shown in Fig. 2. A Cartesian coordinate system xoy is used to describe the crack plane.
It is assumed that u, and 7 depend only on in-plane coordinates, i.e. u, = u.(x,y),r = 1,2 and V = V(x, y).
The system is subjected to a stress field ¢9,(i = 1,2) and electric displacement field DY at infinity. Corres-
pondingly, Eq. (A.2) can be written in the matrix format as,

011 cnp e O 0 en e
022 ¢ ¢ 0 0 €» &
12 = 0 O C33 €3] 0 2812 (A4)
Dl O 0 €3] —€11 O VJ
D, en en 0 0 —en v,

Substituting (A.2) and (A.3) into (A.1) results in the following governing equation of the problem,

(QX? + (R+RNHXY + TY?)v =0 (A.5)
where X = 0/0x, ¥ = 8/0y, and
VT = {Ll],tlz, V} (A6)
C11 0 0
Q=0 c3 ey
0 ey —ep
[0 Cia €
R = C33 0
_631 0 0
_033 0 0
T= 0 cn exn
L 0 en —en
Appendix B

A general dislocation can be defined by,
d(x) =v" —v =dH(x), y=0 (B.1)

with v and v~ representing the displacement and electric potential along upper and lower surfaces of the
crack as defined in (A.6), dy being a constant vector and H(x) being the Heaviside step function.

Eq. (A.5) can be solved using Fourier transform with respect to x, which yields
ov* o%v*

T =0
dy + 0?2

with superscript ‘«’ representing Fourier transform. The solution of v* is generally in the form of

—5’Qv" —is(R+R")
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v =ae W (B.2)
where a and 7 can be determined by solving the following eigenvalue problem

[Q+p(R+R") +p’Tla=0 (B.3)

with p = n/s. It has been proved that this equation has no real roots (Suo et al., 1995). Let p, be the
eigenvalues with positive imaginary parts, a, the corresponding eigenvectors, and p, and a, the conjugates
of p, and a,, which are also the eigenvalues and eigenvectors of Eq. (B.3). To build a solution which
vanishes at infinity, define 1, = p,s, %, = p,s for s > 0 and n, = p,s, 1, = p,s for s < 0. The general solution
of v* can then be expressed in terms of a linear combination of solutions given by (B.2) for different ei-
genvalues, such that

v' = (AFf" + AF'g")H(s) + (AFf' + AF'g ) H(—s) (B.4)

where A = [a;,a,,a;] and A = [a}, a5, 23] are known matrices determined by the eigenvectors. The matrices
F and F' are given by

F(s,y) = diagle ™, ¢, ¢ (B.5)

F'(s,y) = diag[e ™7, e v e i) (B.6)
f and g are coeflicient vectors to be determined with the superscripts » and / representing the right (s > 0)
and left (s < 0) half-planes. The corresponding stress and electric displacement fields can be expressed as,

t=R' —+T_— (B.7)

with tT = {O’z],O’zz,Dz}.
From Eq. (B.4), the stress and electric displacement fields due to a dislocation defined by (B.1) can then
be obtained using Fourier and inverse Fourier transforms, as

1 1
t=——H"'dy-, y=0 (B.8)
Y X
where
H = —2Im(AB™) (B.9)

H is symmetric and only the last element /33 is negative (Suo et al., 1995). Matrix B is defined by,
B =R'A + TAP (B.10)
with R and T being given before and P = diag[p;, p», p3].
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