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Abstract

Existing studies on the coupled electroelastic behaviour of cracked piezoelectric media have been based mostly on the

electrically impermeable and permeable crack models. The current paper presents a study of the effective electroelastic

property of piezoelectric media weakened by parallel cracks using a dielectric crack model with the electric boundary

condition along the crack surfaces being governed by the opening displacement. The theoretical formulation is obtained

using the dilute model of distributed cracks and the solution of a single dielectric crack problem. It is observed that the

effective electroelastic property of cracked piezoelectric media is nonlinear and sensitive to loading conditions. Different

modes of crack deformation are predicted and discussed. Attention is paid to the transition between electrically per-

meable and impermeable crack models.
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1. Introduction

Piezoelectric materials have been widely used in electromechanical devices, such as actuators, sensors
and transducers due to their strong electromechanical coupling. The newly developed piezoceramic ma-

terials are generally brittle and susceptible to cracking during manufacturing and service processes. It is,

therefore, essential to evaluate the electromechanical behaviour of this type of piezoelectric materials in the

presence of microcracks.

The existence and development of microcracks in solid media exert important influences on various

aspects of material properties. The investigation on effective material properties of microcracked media is of

great importance and has drawn significant attention from the research and industrial communities. For

traditional microcracked solids where boundary conditions along the crack surfaces are well defined,
various micromechanics schemes have been established to estimate the effective moduli. The simplest one is
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the dilute or noninteracting model (Kachanov, 1992, 1993), in which the interaction among cracks is neg-

lected. When accounting for the effects of the microcrack interaction, one may estimate the effective

moduli by using self-consistent method (Hori and Nemat-Nasser, 1983; Budiansky and O�Connell, 1976),

the differential method (Norris, 1985; Hashin, 1988; Zimmerman, 1991), the Mori–Tanaka method (Mori
and Tanaka, 1973; Benveniste, 1986; Weng, 1990), and the generalized self-consistent method (Aboudi and

Benveniste, 1987; Huang et al., 1994). In all these methods, it is assumed that the microcracked solids are

statistically homogeneous and subjected to uniform tractions or displacements.

Relatively fewer studies have been conducted to deal with the effective electroelastic property of

piezoelectric materials. The models mentioned above have been modified and used to study this type of

materials. The effective electroelastic moduli of fiber reinforced piezoelectric composites were predicted by

using the self-consistent method based on a concentric cylinder model (Grekov et al., 1989). Dunn and

Taya (1993a,b) estimated the effective properties of piezoelectric composites using dilute, self-consistent,
Mori–Tanaka and differential micromechanics models. The effective thermo-electro-elastic moduli of

multiphase fibrous composites were studied by Chen (1994). Yu and Qin (1996) evaluated the thermo-

electro-elastic properties of microcracked piezoelectric materials using the generalized self-consistent

method.

It should be noted that for microcracked piezoelectric media, the electric boundary condition along

crack surfaces is still one of the fundamental issues requiring further investigation, which may have im-

portant influence on the effective electroelastic property. Existing studies on the effective properties of

cracked piezoelectric materials, as mentioned above, have been limited mostly to two typical crack models
using different electric boundary conditions, i.e. electrically permeable model (Parton, 1976; Wang, 2001)

and electrically impermeable model (e.g., Deeg, 1980; Pak, 1990; Suo et al., 1995; Park and Sun, 1995).

These models represent two limiting cases where the electric permittivity of the crack is infinite and zero,

respectively. Elliptical crack models (McMeeking, 1989; Sosa, 1991; Dunn, 1994; Zhang et al., 1998) has

been used to study the effect of initial crack opening and the dielectric medium inside a crack upon electric

boundary conditions. The results indicate that the permeable condition may underestimate the effect of the

electric field on the crack propagation and impermeable model may overestimate its effect. For a slit crack,

since the dielectric constant of piezoceramics is much higher than that of the air (or vacuum) filling the
crack, the electric boundary condition may be very sensitive to the crack opening caused by the applied

mechanical and electric loads (Wang, 2001; Wang and Jiang, 2002a,b). As a result, the electric boundary

condition along the crack surfaces becomes deformation-dependent, which results in nonlinear response of

the cracked medium to the applied loads and may significantly affect the effective electroelastic property.

It is therefore the objective of the current paper to provide a theoretical study of the effective electro-

elastic property of microcracked piezoelectric materials. A dielectric crack model with deformation-

dependent electric boundary conditions in conjunction with a dilute model of interacting cracks are used to

determine the nonlinear behaviour of the cracked medium. Special attention is paid to the effect of the
dielectric medium filling the crack upon the effective electroelastic properties and the transition between

permeable and impermeable crack models with increasing crack opening.
2. Statement of the problem

The plane problem envisaged in the current paper is to determine the effective electroelastic property of a

piezoelectric medium weakened by parallel distributed cracks filled with a dielectric medium with negligible

mechanical moduli. Assume that the microcracked piezoelectric medium can be modelled by a represen-

tative volume element (RVE) of volume X with unit thickness in z-direction and area A in xoy plane as

shown in Fig. 1. The effective electroelastic property of this cracked medium can be derived by considering
the relation between the volume averages of two piezoelectric field variables U and Z,



Fig. 1. The RVE model with parallel cracks.
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U ¼ 1

X

Z
UdX ð1Þ

Z ¼ 1

X

Z
ZdX ð2Þ
where U and Z are defined as,
U ¼ fU11;U22;U12;U31;U32gT ð3Þ

Z ¼ fZ11; Z22; 2Z12; Z31; Z32gT ð4Þ

with the components of these vectors being given by
UIj ¼
rIj I ; j ¼ 1; 2

Dj I ¼ 3; j ¼ 1; 2

�
ð5Þ

ZIj ¼
ðuI ;j þ uj;IÞ=2 I ; j ¼ 1; 2

V;j I ¼ 3; j ¼ 1; 2

�
ð6Þ
rIj, uI , Dj and V are the stress, the displacement, the electric displacement and electric potential, respec-

tively. In the current paper, bold letter denotes matrix/vector quantities.
The general relation between Z and U can be expressed as,
Z ¼ SU ð7Þ

with S being the generalized compliance matrix of the effective medium, which may depend on U. Suppose

the boundary oX of the RVE is subjected to tractions Ti and electric displacement D, which correspond to a

uniform stress and electric displacement field U0 ¼ fr0
11; r

0
22; r

0
21;D

0
1;D

0
2g with Ti ¼ r0

ij�nnj, D ¼ D0
j�nnj and �nnj

being the components of outward normal of oX. The averaged stress and electric displacement in the
cracked medium can be obtained using Eq. (1) as,
U ¼ U0 ð8Þ
Using the average scheme of Eq. (2), the average strain and electric field density Z can be decomposed into

two parts as discussed for traditional cracked media by Nemat-Nasser and Hori (1993),
Z ¼ Zm þ Zc ð9Þ
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where Zm can be determined by,
Zm ¼ SmU0 ð10Þ
with Sm being the generalized compliance of the host medium. Zc is caused by the presence of microcracks,

the components of this vector can be determined by the displacement and electric potential jumps across

crack surfaces (Nemat-Nasser and Hori, 1993; Yu and Qin, 1996). Zc can be generally expressed as,
Zc ¼ ScU0 ð11Þ
where Sc is a matrix to be determined through the crack surface deformation. Using Eqs. (7)–(11), the
effective compliance of microcracked piezoelectric media becomes,
S ¼ Sm þ Sc ð12Þ
3. Effective electroelastic properties of cracked piezoelectric media

There are two important issues in the determination of matrix Sc of cracked media through the use of

different micromechanics models, the crack model and the interaction of cracks. In the current paper, �real�
electric boundary condition along crack surfaces will be considered using a dielectric crack model, and a

dilute scheme will be used to treat crack interaction.
3.1. A dielectric crack

Consider a plane problem of a slit crack of length 2a filled with a dielectric medium with negligible

mechanical moduli in an infinite piezoelectric medium with the poling direction along y, as shown in Fig. 2.

Similar to the traditional crack model, the crack surfaces are traction free, i.e.,
rþ
22 ¼ r�

22 ¼ 0 ð13Þ
When this slit crack is deformed, the thickness of the dielectric medium filling the crack will be changed,

which will influence the overall dielectric property of the crack. As a result, the electric boundary condition

along the crack surfaces will be deformation-dependent, unlike the existing crack models where only the

original dimension of the crack is used (see, McMeeking, 1989; Dunn, 1994; Zhang et al., 1998).
Fig. 2. Crack model and the decomposition.
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For cases where opening deformation is significantly smaller than the crack length, it is assumed that the

electric field intensity E2 and the electric displacement D2 are uniform across the thickness of the deformed

crack, with
E2 ¼ � 1

d2
ðV þ � V

�Þ ð14Þ
D2 ¼ �0E2 or D2 ¼ ��0
1

d2
ðV þ � V

�Þ ð15Þ
where d2 ¼ uþ2 � u�2 is the opening displacement of the crack with superscripts + and ) representing the

upper and lower surfaces of the crack, respectively. �0 is the dielectric constant of the medium inside the

crack.

The original crack problem (a) in Fig. 2 can be decomposed into the superposition of two subproblems

(b) and (c). Subproblem (b) contains a uniform medium subjected to the applied mechanical and electric

loading at infinity, and (c) includes a crack subjected to both mechanical and electric loads along its sur-

faces. The deformed geometry is used in (c) for the electric boundary condition. By using superposition

principle on the deformed geometry, the traction free condition given by (13) can be expressed as,
rþ
2i ¼ r�

2i ¼ r2i; r2i þ r0
2i ¼ 0 ð16Þ
and the electric boundary condition (15) becomes
Dþ
2 ¼ D�

2 ¼ D2; D2 þ D0
2 ¼ �0ðE2 þ E�

2Þ ð17Þ
where E2 ¼ �ðV þ � V �Þ=d2, and E�
2 ¼ �ðV �þ � V ��Þ=d2 is the applied electric field intensity.

For cases where the dielectric constant of the piezoelectric medium is much higher than �0, air filled crack

for example, the additional term �0E�
2 in (17) can be ignored in comparison with D0

2. Eqs. (16) and (17)

represent the deformation-dependent boundary condition of subproblem (c), which can be written in a

matrix form as,
tþ t0 þ Kðvþ � v�Þ ¼ 0 ð18Þ
where K is a 3 · 3 matrix with only one nonvanishing element k33 ¼ �0=d2. In addition, t0 ¼ fr0
21; r

0
22;D

0
2g

T
,

t ¼ fr21; r22;D2gT
, and v ¼ fu1; u2; V g.

To solve this problem, the crack in subproblem (c) can be modelled in terms of the jumps of dis-

placements and electric potential across the crack surfaces (Wang and Jiang, 2002a,b), as given in
Appendices A and B,
tðx; 0Þ ¼
Z a

�a

�
� 1

pðx� nÞH
�1

�
d0ðnÞdn ð19Þ
where d0 ¼ od=ox, d is the jumps of the displacement and electric potential across crack surfaces defined by,
dðxÞ ¼ vþðx; 0Þ � v�ðx; 0Þ ð20Þ
and
H ¼
h11 h12 h13
h22 h22 h23
h31 h32 h33

2
4

3
5 ð21Þ
is a constant matrix given in Appendix B. Making use of (19), the general boundary condition (18) becomes
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1

p

Z a

�a

C0

n � x
dn þ t0 þ KHC ¼ 0 ð22Þ
where C ¼ H�1d.

Singular integral equation (22) includes a square-root singularity and can be solved using Chebyshev
polynomials,
C0ðxÞ ¼ mT1

x
a

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

r,
ð23Þ
where mT ¼ fm1;m2;m3g is a vector to be determined and T1ðx=aÞ is the first order Chebyshev polynomial

of the first kind. The jumps of the displacement and the electric potential across the crack surfaces are

obtained as,
d ¼
Du1
Du2
DV

8<
:

9=
; ¼ �

h11m1 þ h12m2 þ h13m3

h21m1 þ h22m2 þ h23m3

h31m1 þ h32m2 þ h33m3

8<
:

9=
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
ð24Þ
Substituting (23) into (22) results in
m� KHm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
¼ �t0 ð25Þ
The only nonvanishing element of K is k33 ¼ �0=d2 with d2 ¼ Du2 being the crack opening displacement.

Then Eq. (25) is reduced to the following algebraic equations
m1 ¼ �r0
21

m2 ¼ �r0
22

m3 ¼ �D0
2 � �0

h31m1 þ h32m2 þ h33m3

h21m1 þ h22m2 þ h23m3

ð26Þ
from which, m1, m2 and m3 can be determined from the applied mechanical and electric loading.

3.2. Effective electroelastic properties

In the current paper, the crack interaction is simplified using a dilute model, i.e. a microcrack is assumed

to be surrounded by a pristine matrix. The crack surface deformation can then be determined directly from

the single crack solution given in the previous subsection. It is assumed that Na is the number of cracks of

length 2aa in the RVE with a ¼ 1; 2; 3; . . . representing cracks of different lengths. The averaged strain and
electric field intensity can then be expressed in terms of the jumps of the displacement and the electric

potential across crack surfaces, similar to that obtained by Nemat-Nasser and Hori (1993) and Yu and Qin

(1996) for traditional cracked materials and for piezoelectric materials with impermeable cracks,
Zc
Ij ¼

1

2A

XN
k¼1

Z ak

�ak
f½1þ HðI � 3Þ�dInj þ Hð2� jÞdjnIgds ð27Þ
where dI are elements of the jumps of the displacement and the electric potential across crack surfaces given
in Eq. (24), and nk are elements of n ¼ f0; 1; 0gT

.

Based on the result of dI from the above mentioned dielectric crack model and making use of Eq. (24),

the total contribution of cracks to the average strain and electric field intensity becomes,
Zc
Ij ¼

d
4
f½1þ HðI � 3Þ�DUInj þ Hð2� jÞDUjnIg ð28Þ
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where
DUI ¼ �
X3

k¼1

hIkmk ðI ; k ¼ 1; 2; 3Þ ð29Þ
are the jumps of the displacement and the electric potential at the centre of the crack, which contains the

nonlinear effect of loading conditions represented by mk, and d is the crack density defined by,
d ¼ p
Xn
a¼1

Naa2a=A
For a typical piezoceramic material with the poling direction along y, the generalized compliance matrix

of the pristine medium Sm is in the form of
Sm ¼

f11 f12 0 0 p21
f12 f22 0 0 p22
0 0 f33 p13 0

0 0 p13 k11 0

p21 p22 0 0 k22

2
66664

3
77775 ¼

c11 c12 0 0 e12
c21 c22 0 0 e22
0 0 c33 e31 0

0 0 e31 ��11 0

e12 e22 0 0 ��22

2
66664

3
77775

�1

ð30Þ
The material constants of PZT-4 piezoceramics (Park and Sun, 1995), for example, are
c11 ¼ 13:9
 1010 N=m2

c12 ¼ 7:43
 1010 N=m2

c22 ¼ 11:5
 1010 N=m2

c33 ¼ 2:56
 1010 N=m2

e12 ¼ �5:2 C=m2

e22 ¼ 15:1 C=m2

e31 ¼ 12:7 C=m2

�11 ¼ 6:45
 10�9 C=Vm

�22 ¼ 5:62
 10�9 C=Vm
For this type of materials, the generalized compliance of the cracked medium defined by (12) can be ob-

tained from Eqs. (11), (28) and (30) as,
S ¼ Sm þ Sc ¼

s11 s12 0 0 s15
s21 s22 0 0 s25
0 0 s33 s34 0

0 0 s43 s44 0

s51 s52 0 0 s55

2
66664

3
77775 ð31Þ
The elements of S are determined by the jumps of the displacement and electric potential across the crack

surfaces, which are governed by the applied loads.

In the following discussion, attention will be paid to the determination of the elements of the compliance
matrix S under different mechanical and electric loads. It should be mentioned that, because of the non-

linearity of the problem and the specific definition of S given by (12), the resulting S may not be symmetric.
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3.2.1. Tensile loading

First, let the RVE under consideration be subjected to a stress field with r0
22 6¼ 0 and r0

11 ¼ r0
21 ¼

D0
1 ¼ D0

2 ¼ 0. Eq. (26) results in m1 ¼ 0, m2 ¼ �r0
22 and two solutions for m3, as
mþ
3 ¼ 1

2h23
ðA� DÞ; m�

3 ¼ 1

2h23
ðAþ DÞ ð32Þ
where
A ¼ h22r0
22 � �0h33; B ¼ 4h223�0r

0
22; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B

p

mþ

3 ;m
�
3 result in the opening and the overlapping of the crack surfaces, respectively, i.e. Du2ðmþ

3 Þ > 0,

Du2ðm�
3 Þ < 0. The solution corresponding to crack overlapping is not the one we are looking for since this

phenomenon contradicts the original model of the crack. Therefore, for a tensile crack, only an open mode

exists, for which the crack opening and the jump of electric potential DUI at the centre of the crack can be

determined using (29) as
DU2 ¼ h22r0
22 � h23mþ

3 ð33Þ

DU3 ¼ h32r0
22 � h33mþ

3 ð34Þ
Using these jumps along crack surfaces the corresponding effective elastic and piezoelectric parameters can

be determined from Eq. (31) as,
s22 ¼ f22 þ
d
2
ðh22r0

22 � h23mþ
3 Þ=r0

22 ð35Þ

s52 ¼ p22 þ
d
2
ðh32r0

22 � h33mþ
3 Þ=r0

22 ð36Þ

s12 ¼ f12 ð37Þ
3.2.2. Shear loading

For the case where only the shear stress r0
21 is applied, two solutions can be found m3 ¼ 0 and

m3 ¼ ��0ðh33=h23Þ. All these solutions correspond to closed crack. Since h13 ¼ 0, the nonvanishing jumps of

the displacement and electric potential DUI can be expressed as,
DU1 ¼ h11r0
21 ð38Þ

DU3 ¼ �h33m3 ð39Þ
Correspondingly, the following effective elastic and piezoelectric parameters can be derived,
s33 ¼ f33 þ
d
2
h11 ð40Þ

s43 ¼ p13 ð41Þ
3.2.3. Electric loading

When electric displacement D0
2 is applied and r0

11 ¼ r0
22 ¼ r0

21 ¼ D0
1 ¼ 0. Two solutions of m3 can be

obtained as m3 ¼ 0 and m3 ¼ �D0
2 � �0ðh33=h23Þ. m3 ¼ 0 corresponds to a closed crack mode and has no

effect upon the material properties. However, an opening crack mode represented by the second solution
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exists when the applied electric displacement satisfies D0
2 > ��0ðh33=h23Þ. The corresponding jumps of the

displacement and electric potential DUI are
DU2 ¼ h23 D0
2

�
þ �0

h33
h23

�
ð42Þ

DU3 ¼ h33 D0
2

�
þ �0

h33
h23

�
ð43Þ
The effective dielectric and piezoelectric parameters can be expressed as,
s55 ¼ k22 þ
d
2
h33 D0

2

�
þ �0

h33
h23

��
D0

2 ð44Þ

s25 ¼ p22 þ
d
2
ðh23D0

2 þ �0h33Þ=D0
2 ð45Þ

s15 ¼ p21 ð46Þ
3.2.4. Other loading conditions

When only mechanical loading r0
11 or electric displacement D0

1 is applied, there will be no crack opening

and the corresponding electroelastic parameters are same as that of the matrix, i.e.
s11 ¼ f11 ð47Þ

s21 ¼ f12 ð48Þ

s51 ¼ p21 ð49Þ

s44 ¼ k11 ð50Þ

s34 ¼ p13 ð51Þ
Fig. 3. Comparison for the normalized effective c�22.



Fig. 4. Comparison between cracked and porous piezoceramics.
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4. Results and discussion

First, we restrict our attention to the verification of the current solution. For isotropic elastic media

weakened by parallel cracks, an analytical solution can be obtained, which predicts c�22 ¼ 1=ð1þ 2dÞ. The

result is supported by numerical calculations and is identical to that obtained by Kachanov (1992). To

verify the current solution for piezoelectric media and evaluate the suitability of the dilute model (DIL)

used, existing results of normalized stiffness c�22 ¼ c22=cm22 for BaTiO3 weakened by parallel cracks (Qin

et al., 1998) are compared in Fig. 3 with the result of the present solution based on the impermeable crack
model. Excellent agreement is observed. Results from self-consistent (SC) method and finite element (FE)

method are also included in Fig. 3. The comparison shows that, for the current problem, the dilute model

provides reasonable prediction of the effective property of the cracked medium for the crack densities

considered, as evidenced by the good agreement between the current result and that of the finite element

method. Comparison is also made in Fig. 4 between the current solution, based on the impermeable crack
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1
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Fig. 5. The normalized effective s�22 under tensile stress.



Fig. 6. The normalized effective s�52 under tensile stress.

Fig. 7. Variations of s�22 with crack density.
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model, and that of a PZT-5þ weakened by distributed spherical voids (Dunn and Taya, 1993b) with the

crack density being assumed to be equal to the volume fraction of voids. A good agreement is observed for

low crack densities.

The following discussion will be focussed on the numerical results of the effective electroelastic properties

of cracked piezoelectric media, especially the transition between conventional impermeable and permeable

models. Material constants of PZT-4 given in the previous section are used in the simulation. The dielectric

medium filling the crack is assumed to be air with �0 ¼ 8:85
 10�12 C/Vm.
The normalized effective parameter s�22 ¼ s22=f22 under tensile loading given by Eq. (35) is plotted in Fig.

5 with the crack density being d ¼ 0:3p. It shows that this effective elastic modulus decreases with increasing

tensile stress. But this effect is not significant. Corresponding results from impermeable and permeable

crack models are also provided for comparison. The modulus from the current model is higher than the



Fig. 8. Variations of s�52 with crack density.

Fig. 9. The normalized s�55 under electric loading.
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result of the impermeable model but lower than that of the permeable one. For low stress, s�22 is very close to
the corresponding result using the permeable crack model. However, it approaches that of the impermeable

model with increasing stress level. Fig. 6 shows the effect of applied tensile stress upon the normalized

effective piezoelectric parameter s�52 ¼ s52=p22, which is greater than the permeable result but less than the

impermeable one. Similar to s�22, it is observed from Fig. 6 that although the current result supports the

permeable crack model when the stress level is low, with the increase of applied tensile stress the crack

model will approach the impermeable one.

The effects of crack density upon the normalized effective parameters s�22 and s�52 are shown in Figs. 7 and

8, respectively for an applied tensile stress r0
22 ¼ 50 MPa. Both s�22 and s�52 are increasing with the increase of

crack density for both current and impermeable crack models, although crack density d shows no effect on

the normalized effective piezoelectric parameter s�52 from permeable model.



Fig. 10. The normalized s�25 under electric loading.

Fig. 11. Variations of s�55 with crack density.
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For shear loading, it is noted from Eq. (40) that crack density d is the only parameter controlling s33. s33
increases linearly with increasing crack density, which is identified to that by the impermeable and per-

meable models.

Fig. 9 shows the effect of an applied electric displacement D0
2 upon the normalized dielectric parameter

s�55 ¼ s55=k22 with the crack density d ¼ 0:3p. s�55 from the current model increases with increasing applied

electric displacement and is always between the results from two conventional models. s�55 approaches that

of the permeable model when the applied electric displacement is low, as expected. Similar results for

normalized piezoelectric parameter s�25 ¼ s25=p22 are plotted in Fig. 10. The effects of crack density upon the

effective dielectric and piezoelectric parameters s�55 and s�25 under an applied D0
2 ¼ 5:0
 10�2 C/m2 are

provided in Figs. 11 and 12, respectively.
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It should be noted that the effective s�25 and s�52 are load-dependent, which will cause the unsymmetry of

the generalized effective compliance matrix. Significant discrepancy between the current model and the

impermeable and permeable ones is observed, indicating that the dielectric property of the crack and the

crack opening should be considered in determining the effective property of this type of materials.
5. Conclusions

A dielectric crack model is used to investigate the effective electroelastic property of piezoelectric media

with parallel cracks. The jumps of the displacement and electric potential along crack surfaces are used for

formulating the nonlinear electric boundary condition. Attention is focused on the parameters that control

the effective electroelastic properties, the nonlinearity of these effective parameters and the transition be-

tween permeable and impermeable crack models under different loads. The current study indicates that the

commonly used permeable and impermeable crack models represent two limiting cases which may not be

suitable for predicting the effective property of cracked piezoelectric media.
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Appendix A

In the absence of free charges and body forces, the electromechanical behaviour of a piezoelectric

medium is governed by the equilibrium equation and the Gauss� law,
rij;j ¼ 0; Di;i ¼ 0 ðA:1Þ

and the constitutive equations,
rij ¼ cijrsers � erijEr; Di ¼ eirsers þ �ijEj ðA:2Þ
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where cijrs, eirs and �ij are elastic, piezoelectric and dielectric constants, respectively, i; j; r; s ¼ 1; 2; 3, with 1,

2,3 corresponding to x, y and z, respectively. ers and Er are strain and electric field intensity defined by
ers ¼
1

2

our
oxs

�
þ ous

oxr

�
; Er ¼ � oV

oxr
ðA:3Þ
with ur and V being the displacement and the electric potential.

Consider a plane problem of a slit crack of length 2a in an infinite piezoelectric medium with poling
direction along y, as shown in Fig. 2. A Cartesian coordinate system xoy is used to describe the crack plane.

It is assumed that ur and V depend only on in-plane coordinates, i.e. ur ¼ urðx; yÞ; r ¼ 1; 2 and V ¼ V ðx; yÞ.
The system is subjected to a stress field r0

2iði ¼ 1; 2Þ and electric displacement field D0
2 at infinity. Corres-

pondingly, Eq. (A.2) can be written in the matrix format as,
r11

r22

r12

D1

D2

8>>>><
>>>>:

9>>>>=
>>>>;

¼

c11 c12 0 0 e12
c21 c22 0 0 e22
0 0 c33 e31 0

0 0 e31 ��11 0

e12 e22 0 0 ��22

2
66664

3
77775

e11
e22
2e12
V;1
V;2

8>>>><
>>>>:

9>>>>=
>>>>;

ðA:4Þ
Substituting (A.2) and (A.3) into (A.1) results in the following governing equation of the problem,
ðQX 2 þ ðRþ RTÞXY þ TY 2Þv ¼ 0 ðA:5Þ

where X ¼ o=ox, Y ¼ o=oy, and
vT ¼ fu1; u2; V g ðA:6Þ

Q ¼
c11 0 0

0 c33 e31
0 e31 ��11

2
4

3
5

R ¼
0 c12 e12
c33 0 0

e31 0 0

2
4

3
5

T ¼
c33 0 0

0 c22 e22
0 e22 ��22

2
4

3
5

Appendix B

A general dislocation can be defined by,
dðxÞ ¼ vþ � v� ¼ d0HðxÞ; y ¼ 0 ðB:1Þ

with vþ and v� representing the displacement and electric potential along upper and lower surfaces of the

crack as defined in (A.6), d0 being a constant vector and HðxÞ being the Heaviside step function.
Eq. (A.5) can be solved using Fourier transform with respect to x, which yields
�s2Qv� � isðRþ RTÞ ov
�

oy
þ T o

2v�

oy2
¼ 0
with superscript ��� representing Fourier transform. The solution of v� is generally in the form of
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v� ¼ ae�igy ðB:2Þ
where a and g can be determined by solving the following eigenvalue problem
½Qþ pðRþ RTÞ þ p2T�a ¼ 0 ðB:3Þ
with p ¼ g=s. It has been proved that this equation has no real roots (Suo et al., 1995). Let pa be the

eigenvalues with positive imaginary parts, aa the corresponding eigenvectors, and �ppa and �aaa the conjugates

of pa and aa, which are also the eigenvalues and eigenvectors of Eq. (B.3). To build a solution which

vanishes at infinity, define ga ¼ pas, ga ¼ �ppas for s > 0 and ga ¼ �ppas, ga ¼ pas for s < 0. The general solution

of v� can then be expressed in terms of a linear combination of solutions given by (B.2) for different ei-

genvalues, such that
v� ¼ ðAFfr þ AF0grÞHðsÞ þ ðAFfl þ AF0glÞHð�sÞ ðB:4Þ
where A ¼ ½a1; a2; a3� and A ¼ ½a1; a2; a3� are known matrices determined by the eigenvectors. The matrices

F and F0 are given by
Fðs; yÞ ¼ diag½e�ig1y ; e�ig2y ; e�ig3y � ðB:5Þ

F0ðs; yÞ ¼ diag½e�ig1y ; e�ig2y ; e�ig3y � ðB:6Þ
f and g are coefficient vectors to be determined with the superscripts r and l representing the right ðs > 0Þ
and left ðs < 0Þ half-planes. The corresponding stress and electric displacement fields can be expressed as,
t ¼ RT ov

ox
þ T ov

oy
ðB:7Þ
with tT ¼ fr21; r22;D2g.
From Eq. (B.4), the stress and electric displacement fields due to a dislocation defined by (B.1) can then

be obtained using Fourier and inverse Fourier transforms, as
t ¼ � 1

p
H�1d0

1

x
; y ¼ 0 ðB:8Þ
where
H ¼ �2ImðAB�1Þ ðB:9Þ
H is symmetric and only the last element h33 is negative (Suo et al., 1995). Matrix B is defined by,
B ¼ RTAþ TAP ðB:10Þ
with R and T being given before and P ¼ diag½p1; p2; p3�.
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